UNIVERSITY OF MINNESOTA
BOARD OF REGENTS
Facilities Committee
Thursday, December 10, 2009
3:00 – 5:00 p.m.
600 McNamara Alumni Center, West Committee Room

Committee Members
Steven Hunter, Chair
Dallas Bohnsack, Vice Chair
Clyde Allen
Anthony Baraga
Venora Hung
Dean Johnson

Student Representatives
Jennifer McCabe
Aditya Srinath

AGENDA

 A. Akerman Hall Hanger Renovation and Akerman & Mechanical Engineering Life Safety Improvements, Twin Cities Campus
 B. Folwell Hall Interior Renovation, Twin Cities Campus

2. Real Estate Transaction - Action - K. O’Brien/S. Weinberg (pp. 14-17)
 A. Purchase of 22,000 Square Feet of Land at 2201-7th Street S.E., Minneapolis, Twin Cities Campus

3. Real Estate Transactions - Review/Action - K. O’Brien/S. Weinberg (pp. 18-28)
 A. Thirty-Six Month Lease for Warehouse Space for Physics/NOvA Project, Twin Cities Campus
 B. Sale of 64.229 Acres at UMore Park to MN State Colleges & Universities/Dakota County Technical College
 C. Purchase of 1000 Humboldt Avenue, N. Minneapolis, Twin Cities Campus
 D. Fifteen-Year Lease to PETNET Solutions, Inc. for 4,051 Usable Square Feet at 2021-6th Street, SE, Minneapolis, Twin Cities Campus.

 A. Akerman Hall Hanger Renovation and Akerman & Mechanical Engineering Life Safety Improvements, Twin Cities Campus
5. Morris Campus Master Plan Amendments - Review - K. O'Brien/J. Johnson (pp. 31-49)

6. Consent Report - Review/Action - K. O'Brien (pp. 50-57)

7. Information Items - K. O'Brien (p. 58)
Facilities Committee

Agenda Item: Schematic Plans

☑ review/action ☐ action ☐ discussion

Presenters: Vice President Kathleen O’Brien
 Associate Vice President Michael Perkins
 Dean of the Institute of Technology, Steven Crouch
 Dean of the College of Liberal Arts, James Parente

Purpose:

☐ policy ☐ background/context ☑ oversight ☐ strategic positioning

In accordance with Board of Regents Policy: Reservation and Delegation of Authority, review and take action on the schematic plans for the following projects:

A. Akerman Hall Hanger Renovation & Akerman & Mechanical Engineering Life Safety Improvements, Twin Cities Campus
B. Folwell Hall Interior Renovation, Twin Cities Campus

Outline of Key Points/Policy Issues:

The project schematic plans will be presented at the committee meeting. The attached project data sheet for each project addresses the basis for request, project scope, cost estimate, funding, and schedule. Maps locating each project on the Twin Cities campus are also attached.

Akerman Hall Hanger Renovation & Akerman & Mechanical Engineering Life Safety Improvements, Twin Cities Campus

Akerman Hall is the home of the Aerospace Engineering and Mechanics (AEM) Department. AEM is an academic unit within the Institute of Technology offering students BS, MS, or PhD degrees. The undergraduate program is rated 4th in the nation by the Princeton Review’s *Gourman Report on Undergraduate Program* and the graduate program is rated 8th in the nation in public universities (12th overall) by the National Research Council. AEM occupies approximately 35,000 square feet of Akerman’s 60,000 square feet. Approximately 7,700 square feet will be remodeled. The first and mezzanine (second) floors of the hangar space will be completely repurposed to specifically provide flexible light industrial research labs, office and collaborative space. In addition the large open space on the main floor of the hangar is planned as flexible space easily changeable to a lecture or presentation venue. An accessible entry and toilets will also be provided.
Akerman Hall and old Mechanical Engineering comprised of approximately 200,000 square feet of space will be furnished with a fire alarm and a fire sprinkler suppression system.

Folwell Hall Interior Renovation, Twin Cities Campus

Folwell Hall, completed in 1906, is located in the heart of the Historic Knoll and is home to the College of Liberal Arts Language Departments as well as thirty-one classrooms that are managed by the Office of Classroom Management. The central corridor and the fireplace rooms 128 and 131 on the first floor are historic and will be preserved and restored. With the exception of the historic elements on the first floor, the marble staircases, and the entrances; the interior of the building will be demolished and reconstructed to provide modern facilities for the College of Liberal Arts language programs and classrooms.

The exterior of Folwell was stabilized and restored in 2007; therefore, this project will focus on the interior.

Background Information:

Akerman Hall Hanger Renovation & Akerman & Mechanical Engineering Life Safety Improvements, Twin Cities Campus

Funding for the Akerman Hall Hangar portion of this project is funded from (a) the 2008 Laboratory Improvement Appropriation, (b) the Department of Aerospace Engineering and Mechanics (c) the Institute of Technology, and (d) an internal loan to be repaid by Aerospace Engineering and Mechanics. Of the $2,020,000 portion of this project that is funding the Akerman Hall Hangar; $855,000 was approved as a part of the 2009 Capital Budget approved by the Regents in June 2008. A capital budget amendment for the balance of the funding in the amount of $1,165,000 is being presented for Regents review this month.

Funding for the Akerman & Mechanical Engineering Life Safety Improvements portion of the project is funded with $3,200,000 of 2009 HEAPR funds approved as a part of the 2010 Capital Budget in June 2009.

Folwell Hall Interior Renovation, Twin Cities Campus

Funding for Fowell Hall is included in the University 2010 State Capital Appropriation Request and is planned to be included in the 2011 Capital Budget scheduled for presentation to the Board of Regents in May and June 2010.

President’s Recommendation for Action:

The President recommends approval of the schematic plans and of the appropriate administrative officer proceeding with the award of contracts for the development of construction documents and construction for the following Projects:

A. Akerman Hall Hanger Renovation & Akerman & Mechanical Engineering Life Safety Improvements, Twin Cities Campus

B. Folwell Hall Interior Renovation, Twin Cities Campus
Akerman Hall Hangar Renovation

Akerman Hall is the home of the Aerospace Engineering and Mechanics department (AEM). AEM is an academic unit within the Institute of Technology offering students BS, MS or PhD degrees. The Aerospace Engineering and Mechanics program was one of the first 10 aerospace engineering programs accredited in 1936. The undergraduate program is rated 4th in the nation by the Princeton Review's *Gourman Report on Undergraduate Program* and the graduate program is rated 8th in the nation in public universities (12th overall) by the National Research Council.

As a constantly changing profession, aerospace engineering encompasses a wide range of complex problems and technologies requiring teaching and education space far different than space currently found in the hangar space of Akerman Hall. Akerman Hall is home for 16 faculty members, 110 graduate students, 340 undergraduates, post-doctoral research associates and staff. Approximately 35,000 of Akerman’s 60,000 square feet are assigned to AEM.

The hangar space, once used for actual aircraft testing, retains much of the original 1948 construction and infrastructure. The department has adapted the space in piecemeal fashion over the years to accommodate changing program needs. The last renovation was in 1985 when testing lab space was inadequately constructed on a portion of the first level.

In December of 2007, AEM formed a Space Committee to identify how the space in Akerman Hall could be used most effectively to meet the department’s objectives over the next ten years. Consultants studied current use of the building, and identified potential changes to better utilize the space. Findings noted that office space for graduate students and postdoctoral and research associates is extremely tight and insufficient to meet the needs of AEM researchers and that flexible, modern light industrial laboratory space was outdated and insufficient for the program size.

In follow up to the 2007 report, AEM hired BWBR Architects to develop a long term space plan to solving the program space deficiencies. The hangar was studied in detail – owing to its size, it offered flexible and cost efficient planning opportunities within Akerman Hall. Design solutions focused on reconfiguring and remodeling the hangar to include new student support work space and flexible laboratory space. The plan noted that a comprehensive remodeling of the hangar would correct many building code violations, provide a more efficient use of the space and create an attractive, engaging, and collaborative learning environment essentially not found in the department today. The new light industrial labs proposed in the hangar space replace obsolete 1985 testing labs. The new labs will allow research on subjects including guidance, navigation, and control of indoor micro-air vehicles, smart materials and large wind turbines.

Akerman & Old Mechanical Engineering – Fire Life Safety Improvements
Akerman Hall and old Mechanical Engineering comprise 200,000 square feet of space without fire protection sprinklers and fire alarms. Spaces within these buildings contain labs, industrial shops, classrooms, and office space unprotected by automatic sprinkler or fire alarm systems. This project component will be funded by 2009 HEAPR funds.

Proposals of other renovations in Akerman Hall have been stymied over the past 10 years primarily because of the lack of automatic fire life safety systems being in place.

Akerman Hall – Accessibility

Akerman Hall ranks as one of lowest graded buildings in terms of accessibility. This project will provide a pair of accessible toilet rooms on first floor and building entry at the hangar – both firsts for the building.

2. **Scope of Project:**

Constructed in 1948, the hangar of Akerman Hall contains much of its original construction, including single panel steel windows, rusting and non air tight hangar door, non compliant open stairs and labs constructed in 1985 made with non-allowed wood wall and ceiling framing. The first and mezzanine (second) floors of the hangar will be completely replanned and repurposed to specifically provide flexible light industrial research labs, office and collaborative space for undergraduate and graduate students, and post doctorate and research associates students. The repurposing and replanning of the hangar will accommodate 20-30 students and researchers in the collaboration and work spaces, and 15-30 in the new light industrial labs. Additionally, the large open space on the main floor of the hangar is planned as flexible space easily changeable to a lecture or presentation venue.

The driveway outside of the hangar will be replaced with a new concrete pedestrian plaza which will provide the first accessible entry from Union Street.

Other renovated spaces in Akerman Hall will include the first accessible toilet rooms on first floor, enclosure of the south stair way for building code safety compliance, and a new person lift to provide accessibility from the 2nd floor corridor to 3rd level of the hangar.

Renovation in Mechanical Engineering will be limited to the addition of the fire protection sprinkler and fire alarm systems. Installation of the systems in both buildings will be made in manner that is sensitive to the few significant interior historical features of the original 1948 constructions.

Demolition in the hangar will include all of the current interior construction except those features identified as historically significant by historical preservation eligibility research. The hangar door will be replaced with a new aluminum glass curtain wall and energy efficient glazing and upgraded windows which will maintain the historic character.

Renovation construction will encompass approximately 7,700 square feet of the approximately 35,000 square feet of Akerman Hall assigned to AEM, 2000 square feet of
exterior area, and over 200,000 square feet of Akerman and Mechanical Engineering for fire life safety improvements.

3. **Environmental Issues:**

The University has completed a hazardous material survey of the existing conditions in the hangar and other areas affected by this project. Hazardous materials include lab counter undercoatings, miscellaneous pipe insulation, limited mercury contamination, lead paint, and window caulk. This material will be removed by the University prior to construction.

4. **Cost Estimate:**

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Cost</td>
<td>$3,870,000</td>
</tr>
<tr>
<td>Non Construction Cost</td>
<td>$1,350,000</td>
</tr>
<tr>
<td>Total Project Cost</td>
<td>$5,220,000</td>
</tr>
</tbody>
</table>

5. **Capital Funding:**

<table>
<thead>
<tr>
<th>Fund Source</th>
<th>Approved</th>
<th>Increase</th>
<th>Revised Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akerman Hall Hanger Renovation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008 Lab Improvement Appropriation</td>
<td>$570,000</td>
<td>$570,000</td>
<td></td>
</tr>
<tr>
<td>Dept of Aerospace Engr. & Mechanics</td>
<td>$285,000</td>
<td>$15,000</td>
<td>$300,000</td>
</tr>
<tr>
<td>Institute of Technology</td>
<td>500,000</td>
<td></td>
<td>500,000</td>
</tr>
<tr>
<td>Internal Loan (Repaid by Aerospace Engr. & Mechanics)</td>
<td>650,000</td>
<td>650,000</td>
<td></td>
</tr>
<tr>
<td>Subtotal Akerman Hanger Renovation</td>
<td>$855,000</td>
<td>$1,165,000</td>
<td>$2,020,000</td>
</tr>
</tbody>
</table>

Akerman & Mechanical Engineering Life Safety:			
2009 HEAPR Appropriation	$3,200,000	$3,200,000	
Total Project Funding	$4,055,000	$1,165,000	$5,220,000

6. **Capital Budget Approvals:**

Funding for the Akerman Hall Hangar Renovation portion of the project was originally included in the Fiscal Year 2009 Capital Budget approved by the Board of Regents in June 2008. A Capital Budget Amendment in the amount of $1,165,000 for this portion of the project is being requested at this time.

Funding for the Akerman & Mechanical Engineering Life Safety portion of the project was included in the Fiscal Year 2010 Capital Budget approved by the Board of Regent in June 2009.

7. **Annual Operating and Maintenance Cost and Source of Revenue:**
The annual operating and maintenance costs will remain approximately the same as a result of the hangar renovation and infrastructure new construction. The hangar currently houses lab operations and department activities. The fire life safety construction has very minimal ongoing costs.

8. Time Schedule:

Complete Design January 2010
Establish Construction Guaranteed Maximum Price January 2010
Begin construction Spring 2010
Complete construction Fall 2010

9. Design Build Contractor/Architect, Engineers, Consultant Team

Design Build Contractor: M.A. Mortenson, Minneapolis
Architect: BWBR Architects, St. Paul
Engineer: Sebesta Blomberg & Associates, Roseville
Historical Consultant: Hess Roise, Minneapolis

10. Recommendation:

The above described project scope of work, cost, funding, and schedule is appropriate:

E. Thomas Sullivan 11-30-09
E. Thomas Sullivan, Senior Vice President for Academic Affairs & Provost

Richard Pfutzenreuter, Vice President and Chief Financial Officer

Kathleen O’Brien, Vice President for University Services

11/25/09
11/30/09
Akerman Hall and Mechanical Engineering

Twin Cities, Minneapolis
East Bank Campus
Folwell Hall Interior Renovation
Twin Cities Campus
Project No. 022-08-1102

1. Basis for Request:

Folwell Hall, completed in 1906, is located in the heart of the Historic Knoll district at 9 Pleasant Street SE on the East Bank campus. The building is constructed with masonry bearing walls using brick, stone and clay tile that support iron roof trusses and iron floor beams. The first floor has the main historical spaces: the Center Corridor and Fireplace rooms 128 and 131. Also, of historical importance are the two interior marble stairways and the exterior entrances on all four sides of the building. The proposed renovation will preserve the historical architecture of the building, with its beautiful marble floors, wainscoting and gargoyles, while at the same time creating a space capable of meeting the diverse educational needs of today’s students.

One hundred years of daily use and deferred maintenance have taken their toll on the interior of the building. During 2007, the entire masonry exterior of the building was repaired and restored, including a new clay tile roof and other infrastructure improvements. This project, completing the final phase, will renovate the entire interior, thereby preparing Folwell Hall for the next century of collegiate use.

Folwell Hall is currently the home of the College of Liberal Arts Language Departments, as well as thirty-one classrooms which are managed by Office of Classroom Management. The renovation of Folwell Hall will accommodate the same language departments: German, Scandinavian & Dutch; French & Italian; Asian Language & Literature; and Spanish & Portuguese. The four Language Departments, including their faculty offices, will be located on the second and third floors. The fourth floor will accommodate the Language Department’s TA offices. The project will also create a more visible location for the Center for Medieval Studies on the third floor. The thirty-one classrooms will be located more efficiently on the ground and first floors, thereby reducing travel distance for students. On a broader level, the renovation of Folwell Hall addresses the critical campus wide shortage of modernized teaching space by creating classrooms capable of supporting today’s technology oriented teaching methodologies.

2. Scope of Project:

- Demolition of interior with the exception of historic elements on the first floor and the marble staircases.
- Interior reconstruction consisting of the following:
 - Historic elements will be restored
 - New energy efficient windows.
 - Demountable wall system.
 - Two new five stop elevators and one new two stop elevator from tunnel to ground floor, two new additional staircases.
 - Replacement of ventilation, heating, electrical power, lighting, telephone and data.
 - New life safety systems – fire alarm and fire sprinkler systems.
 - Accessible toilet rooms on all floors.
 - Classrooms provided with technology rich learning environments.
 - Faculty libraries, conference and seminar rooms for collaboration
 - Departmental shared administration spaces
• The gross square footage (GSF) is 111,500 Gross Square Feet.
• The assignable square footage (ASF) is 56,800 Square Feet.

3. Master Plan or Precinct/District Plan:

This project is in compliance with the University of Minnesota Twin Cities Campus Master Plan – 2009: Guiding Principle 5, Steward Historic Buildings and Landscapes. Development Framework Map, Adaptive Reuse designations (Folwell Hall inclusive) reflects priorities for capital investment and renovation of important buildings to support the University’s academic mission.

4. Environmental Issues:

The building has been surveyed for asbestos materials and asbestos containing materials have been identified. Where it is anticipated that new construction work will impact areas containing hazardous materials as identified in the surveys, those materials will be abated. The large area of soils in the existing crawl space is contaminated by asbestos fibers; this area will be encapsulated by a new concrete slab at the east end of the building for new mechanical spaces. All earth that will need to be excavated will be handled as contaminated soils as required by environmental regulations. Further, if concealed conditions are encountered during construction, which are determined to contain hazardous materials, additional abatement will be required and performed in conformance with State and Federal regulations.

5. Cost Estimate:

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Cost</td>
<td>$27,400,000</td>
</tr>
<tr>
<td>Non Construction Cost</td>
<td>7,100,000</td>
</tr>
<tr>
<td>Total Project Cost</td>
<td>$34,500,000</td>
</tr>
</tbody>
</table>

6. Capital Funding:

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 State Capital Appropriation Request</td>
<td>$23,115,000</td>
</tr>
<tr>
<td>University Funds</td>
<td>11,385,000</td>
</tr>
<tr>
<td>Total Project Funding</td>
<td>$34,500,000</td>
</tr>
</tbody>
</table>

7. Capital Budget Approvals:

Funding for this project is planned to be included in the Fiscal Year 2011 Capital Budget.

8. Annual Operating and Maintenance Cost and Source of Revenue:

Operating and maintenance cost for Folwell totaled $591,000 for fiscal year 2008 (July 2007 to June 2008). The facilities operating and maintenance costs for Folwell Hall are included in Facilities Management’s operating and maintenance cost pool.
9. **Time Schedule (contingent upon funding):**

<table>
<thead>
<tr>
<th>Activity</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete design</td>
<td>November 2010</td>
</tr>
<tr>
<td>Begin construction</td>
<td>December 2010</td>
</tr>
<tr>
<td>Complete construction</td>
<td>December 2011</td>
</tr>
<tr>
<td>Occupancy</td>
<td>January 2012</td>
</tr>
</tbody>
</table>

10. **Architect / Construction Manager:**

Architect: Miller-Dunwiddie Architects
Construction Manager: McGough Construction

11. **Recommendation:**

The above described project scope of work, cost, funding, and schedule is appropriate:

Richard Pfunzenreuter, Vice President and Chief Financial Officer
E. Thomas Sullivan, Senior Vice President for Academic Affairs & Provost
Kathleen O'Brien, Vice President for University Services

Folwell(12-09)
Twin Cities, Minneapolis
East Bank Campus

Folwell Hall
Facilities Committee

Agenda Item: Real Estate Transaction

- review
- review/action
- action
- discussion

Presenters: Vice President Kathleen O’Brien
Susan Carlson Weinberg, Director of Real Estate

Purpose:

- policy
- background/context
- oversight
- strategic positioning

In accordance with Board of Regents Policy: Reservation and Delegation of Authority, review the following real estate transaction:

A. Purchase of 22,000 Square Feet of Land at 2201-7th Street SE, Minneapolis (Twin Cities Campus)

Outline of Key Points/Policy Issues:

The details of this transaction and its financial impact are described in the transaction information pages immediately following this page.

Background Information:

Board of Regents Policy: Reservation and Delegation of Authority states that “The Board of Regents reserves to itself authority to approve the purchase or sale of real property having a value greater than $250,000 or larger than ten (10) acres” and all “leases of real property, easements and other interests in real property if the initial term amount to be paid by or to the University exceeds $250,000, consistent with Board policies.”

The Board of Regents reviewed this transaction in October, 2009.

President’s Recommendation for Action:

The President recommends approval of the following real estate transaction:

A. Purchase of 22,000 Square Feet of Land at 2201-7th Street SE, Minneapolis (Twin Cities Campus)
1. **Recommended Action**

The President recommends that the appropriate administrative officers receive authorization to execute the appropriate documents providing for the purchase of 21,924 square feet of land at 2201 - 7th Street SE, Minneapolis.

2. **Location and Description of the Property**

The subject property is located east and north of and contiguous to other University-owned property, including the long-narrow strip of land totaling 1.394 acres purchased in June, 2009 from Union Pacific Railroad Company. The subject 21,924 square foot parcel at 2201 - 7th Street SE consists of vacant land.

The legal description of the property:

Lot 11 and Part of Lot 10, Auditor’s Subdivision No. 88, Hennepin County, Minnesota.

3. **Basis for Request**

This property is required for the Center for Magnetic Resonance Research (CMRR) Renovation and Expansion Project, the first project to be constructed as a part of the Biomedical Research Facilities Program approved by the 2008 legislature. This additional land will allow for the necessary service drive on the north and east sides of the expanded CMRR facility and for utility infrastructure.

4. **Details of Transaction**

The owner of the property is the Union Pacific Railroad Company. The University has now completed a boundary survey which confirmed the parcel size at 21,924 square feet. The resulting final purchase price is $504,252 (at $23.00 per square foot).

Closing is expected to occur on or before January 31, 2010. The University will pay cash at closing.
5. Use of Property

The property will be used to provide the necessary land for the planned service drive on the north and east sides of the expanded Center for Magnetic Resonance Research, as well as for utility infrastructure.

6. Environmental

The University has completed a Phase I environmental site assessment. Due to the property’s former use as a railroad yard and other past industrial uses in the area involving petroleum and/or hazardous substances, a Phase II soil and groundwater investigation will be completed to confirm the property is in acceptable environmental condition. If environmental impacts are detected, the property will be submitted into the Minnesota Pollution Control Agency’s (MPCA) Voluntary Investigation and Cleanup (VIC) program and/or Petroleum Brownfields (PB) program, and all appropriate MPCA assurances available through these programs will be requested.

7. Source of Funding

The purchase of the property will be funded as follows: one-half from the Center for Magnetic Resonance Research Expansion and Renovation Project funds; and one-half from the Biomedical Research Facilities Program fund.

8. Recommendations

The above-described real estate transaction is appropriate:

Richard H. Pfitzenreutter III, Vice President for Finance and CFO

Frank B. Cerra, Senior Vice President for Health Sciences and Dean

Kathleen O’Brien, Vice President for University Services
Purchase of 21,924 Square Feet of Land from Union Pacific Railroad

Base Data: Real Estate Office
MetroGIS, MNDNR, MNDOT

This map is intended to be used for planning purposes only and should not be relied upon where a survey is required.
Facilities Committee

Agenda Item: Real Estate Transactions

☐ review ☒ review/action ☐ action ☐ discussion

Presenters: Vice President Kathleen O'Brien
Susan Carlson Weinberg, Director of Real Estate

Purpose:

☐ policy ☐ background/context ☒ oversight ☐ strategic positioning

In accordance with Board of Regents Policy: Reservation and Delegation of Authority, review and recommend approval of the following real estate transactions:

A. Thirty-Six Month Lease for Warehouse Space for Physics/NOvA Project (Twin Cities Campus)
B. Purchase of 1000 Humboldt Ave. No., Minneapolis (Twin Cities Campus)
C. Sale of 64.299 Acres at UMore Park to Minnesota State Colleges and Universities/Dakota County Technical College (UMore Park)
D. Fifteen-Year lease to PETNET Solutions, Inc., 4,051 Usable Square Feet at 2021-6th Street SE, Minneapolis (Twin Cities Campus)

Outline of Key Points/Policy Issues:

Due to the fact that there is no Board of Regents meetings in January 2010, all of the above transactions are brought for review and action in December 2009.

The details on the Thirty-Six Month Lease for Warehouse Space for the Physics/NOvA Project will be distributed at the Facilities Committee meeting. Two final optional locations will be inspected the first week of December, 2009 and a final decision by Physics of which location to lease will then be made. To meet the Physics' timeline for assembly of detectors in the premises to be leased, which are then shipped to the NOvA site, the University expects that the lease will need to be executed by December 31, 2009 for the landlord to begin construction of the University's required renovations in the leased premises in early January, 2010 for occupancy by Physics by March 1, 2010.

The details of the above purchase, sale and lease transactions and their financial impact are described in the transaction information pages immediately following this page. The closing on the purchase of 1000 Humboldt Ave. No., Minneapolis, is expected to occur by December 31, 2009. The closing on the sale of 64.299 Acres at UMore Park is expected to occur by January 31, 2010. The execution of the lease to PETNET is expected to occur by December 15, 2009, allowing the tenant to then proceed with purchase of the cyclotron, which has a long purchase lead-time.
Background Information:

Board of Regents Policy: Reservation and Delegation of Authority states that “The Board of Regents reserves to itself authority to approve the purchase or sale of real property having a value greater than $250,000 or larger than ten (10) acres” and all “leases of real property, easements and other interests in real property if the initial term amount to be paid by or to the University exceeds $250,000, consistent with Board policies.”

President's Recommendation for Action:

The President recommends approval of the following real estate transaction:

A. Thirty-Six Month Lease for Warehouse Space for Physics/Nova Project (Twin Cities Campus)
B. Purchase of 1000 Humboldt Ave. No., Minneapolis (Twin Cities Campus)
C. Sale of 64.299 Acres at UMore Park to Minnesota State Colleges and Universities/Dakota County Technical College (UMore Park)
D. Fifteen-Year lease to PETNET Solutions, Inc., 4,051 Usable Square Feet at 2021-6th Street SE, Minneapolis (Twin Cities Campus)
SALE OF 64.299 ACRES IN DAKOTA COUNTY TO MINNESOTA STATE COLLEGES AND UNIVERSITIES/ DAKOTA COUNTY TECHNICAL COLLEGE (UMORE PARK)

1. Recommended Action

The President recommends that the appropriate administrative officers receive authorization to execute the appropriate documents providing for the sale of 64.299 acres at UMore Park in Dakota County.

2. Location and Description of the Property

The subject property is located at UMore Park in Dakota County, south of County Road 42 and between Akron and Audrey Avenues, adjacent to the Dakota County Technical College Campus.

The legal description of the property:

Tracts A, B, and C located in the Southwest Quarter of Section 26 and the Southeast Quarter or Section 27, Township 115, Range 19, Dakota County, Minnesota.

3. Basis for Request

The Minnesota State Colleges and Universities has offered to purchase this land, which it has been leasing from the University since April 1, 1995 for a Decision Driving Course operated by the Dakota County Technical College, for expansion of the Dakota County Technical College Campus. That lease included an option for the Minnesota State Colleges and Universities to purchase the land.

4. Details of Transaction

The buyer, Minnesota State Colleges and Universities (MnSCU), will pay $1.9 million, cash, for the property. The transaction will include a permanent easement granted by the University to MnSCU for a rail spur located west of the subject 64.299 acres used in conjunction with the Dakota County Technical College’s Railroad Conductor Technology Program. Closing is expected to occur on or before January 31, 2010.
5. Use of Property

MnSCU will use the property for expansion of the DCTC Campus, including a Decision Driving Course for training drivers of public safety and emergency vehicles on various road conditions and for the DCTC Railroad Conductor Technology Program.

6. Use of Sale Proceeds

The net proceeds from the sale of the subject property will used to pay expenses related to the UMore Park planning for development and gravel mining activities.

7. Recommendations

The above-described real estate transaction is appropriate:

Richard H. Pfutzenreuter III, Vice President for Finance and CFO

E. Thomas Sullivan, Senior Vice President for Academic Affairs and Provost

Kathleen O’Brien, Vice President for University Services
Sale of 64.299 Acres at UMORE Park

Tracts A, B, & C
Easement

This map is intended to be used for planning purposes only and should not be relied upon where a survey is required.

Base Data: Real Estate Office MetroGIS, MNDNR, MNDOT
PURCHASE OF 1000 HUMBOLDT AVENUE NORTH, MINNEAPOLIS (TWIN CITIES CAMPUS)

1. Recommended Action

The President recommends that the appropriate administrative officers receive authorization to execute the appropriate documents providing for the purchase of 1000 Humboldt Avenue North, Minneapolis.

2. Location and Description of the Property

The subject property is located west of I-94 and north of Highway 55 at the southeast corner of the Humboldt and 11th Avenues North intersection, approximately 1/2 mile southeast of the University’s Urban Research and Outreach Center at 2001 Plymouth Avenue North. Adjacent property uses are Bethune Park and Bethune Elementary School.

The property consists of a one-story with mezzanine office and warehouse building constructed in 1990 situated on 2.87 acres. The building totals 61,088 gross square feet, of which 14,784 square feet is office space.

The legal description of the property:

Lots 1, 2, 3 and 4 and Parts of Lots 5 and 6, Block 8, Bethune 1st Addition, Hennepin County, Minnesota.

3. Basis for Request

Although University units to occupy the building are yet to be confirmed, the building does provide the potential for a University of Minnesota Child and Family Center operated by Professor Dante Cicchetti, an offsite location for unstaffed modular data centers serving the University’s computing needs, and an archival facility operated by University Libraries.

4. Details of Transaction

The owner of the property is Foundation Capital Resources, Inc. The purchase price is $2.31 million. The close is expected to occur on or before December 31, 2009.
6. **Environmental**

The University has completed a Phase I environmental site assessment. Due to the property’s former use as a repair shop, food production site and bus service warehouse and resulting potential for releases of petroleum and/or hazardous substances to the floor drains and loading dock areas, the University will be completing a Phase II soil and groundwater investigation and a building forensic study to confirm the property is in acceptable environmental condition. If environmental impacts are detected, the property will be submitted into the Minnesota Pollution Control Agency’s (MPCA) Voluntary Investigation and Cleanup (VIC) program and/or Petroleum Brownfields (PB) program, and all appropriate MPCA assurances available through these programs will be requested.

7. **Source of Funding**

The purchase of the property will be funded with University debt.

8. **Recommendations**

The above-described real estate transaction is appropriate:

Richard H. Pfutenreuter III, Vice President for Finance and CFO

Robert J. Jones, Senior Vice President, System Academic Administration

Kathleen O’Brien, Vice President for University Services
This map is intended to be used for planning purposes only and should not be relied upon where a survey is required.

Base Data: Real Estate Office
MetroGIS, MNDNR, MNDOT

Purchase of 1000 Humboldt Ave N
Minneapolis, MN

1000 Humboldt Ave N
Urban Research and Outreach Center

If you have questions, please contact the University of Minnesota Real Estate Office at (612) 624-1636.
FIFTEEN-YEAR LEASE TO PETNET SOLUTIONS, INC., 4,051 USABLE SQUARE AT 2021-6TH STREET SE, MINNEAPOLIS (TWIN CITIES CAMPUS)

1. Recommended Action

The President recommends that the appropriate administrative officers receive authorization to execute a fifteen-year lease for 4,051 usable square feet at 2021-6th Street SE, Minneapolis, for occupancy by PETNET Solutions, Inc.

2. Description of Leased Premises

The leased premises will consist of (1) 4,051 usable square feet of exclusive-use space in an addition now under construction at the University’s Center for Magnetic Resonance Research (CMRR), Building #180, located at 2021-6th Street SE, Minneapolis, (2) non-exclusive access to the building loading dock and reserved parking for three delivery vehicles, (3) shared use of building common areas with other building occupants, and (4) five parking spaces in a University parking facility near the building for use by PETNET staff.

The CMRR is an interdepartmental and interdisciplinary research laboratory that provides state-of-the-art instrumentation, expertise, and infrastructure to carry out biomedical research utilizing the unique capabilities provided by ultra high-field magnetic resonance imaging and magnetic resonance spectroscopy methodology. The two additions now under construction are scheduled to be completed in the fall of 2010 with occupancy to begin in the winter of 2011.

3. Basis for Request

The University will lease the subject space to PETNET Solutions, Inc., a wholly owned subsidiary of Siemens Medical Solutions USA, Inc. (PETNET). The space will be used by PETNET for operation of a radiopharmacy which will include a cyclotron and an associated chemistry lab for the manufacture of Biomarkers for commercial production and PET Radionuclides for research purposes.

The University will operate in adjacent space a Nuclear PET Chemistry Laboratory. PETNET will provide for the University’s research activities in the Nuclear PET Chemistry Laboratory PET Radionuclides or research Biomarkers produced from the cyclotron in PETNET’s adjacent leased premises pursuant to a $1,036,800 three-year guaranteed-minimum-purchase Biomarker Supply Agreement approved by the Board of Regents in September, 2009.

At lease termination or expiration, the University will have an option to purchase from PETNET the cyclotron and/or other PETNET equipment used in the leased premises at PETNET’s then current net book value. The cyclotron and the hot cells and minicells will be depreciated on a
straight line basis over 15 years and PETNET’s other equipment in the leased premises will be depreciated on a straight-line basis over 7 years.

4. Details of Transaction

The subject lease will commence approximately April 1, 2011 and continue for five years with two successive five-year renewal options thereafter (potentially 15 years total, through September 30, 2026).

The University will construct the subject space for occupancy by PETNET as a part of the Center for Magnetic Resonance Research Renovation and Expansion Project. PETNET will purchase and install the cyclotron and other equipment for operation of a radiopharmacy in the leased premises.

5. Lease Costs

PETNET will pay $203,502 per year for rent for the leased premises, increasing annually beginning July 1, 2012 in accordance with the CPI-W for the Minneapolis-St. Paul area, plus separately-metered electricity consumed in the leased premises (excluding the operation of the air handling units) at the standard Twin Cities Campus rate for electricity. PETNET will pay for the 5 parking spaces used by PETNET’s staff at the current rates paid by University staff.

6. Use of Funds Received by the University

The Academic Health Center will receive the rent payments on this lease. Parking and Transportation Services will receive the payments for the 5 parking spaces to be used by PETNET’s staff.

7. Recommendations

The above-described real estate transaction is appropriate:

Richard H. Pfutzenreuter, III, Vice President for Finance and CFO

Frank Cerra, Senior Vice President for Health Sciences

Kathleen O’Brien, Vice President for University Services
Facilities Committee

Agenda Item: Capital Budget Amendment

☑ review □ review/action □ action □ discussion

Presenters: Vice President Kathleen O'Brien
Associate Vice President Michael Perkins
Dean of the Institute of Technology, Steven Crouch

Purpose:

☐ policy ☑ background/context ☑ oversight ☐ strategic positioning

In accordance with Board of Regents Policy: Reservation and Delegation of Authority, review the capital budget amendment for the following project:

A. Akerman Hall Hanger Renovation & Akerman & Mechanical Engineering Life Safety Improvements, Twin Cities Campus

Outline of Key Points/Policy Issues:

The data sheet for this project is provided as a part of the Schematic Plans item of this docket. That data sheet addresses the basis for request, project scope, cost estimate, funding, and schedule. A map locating the project on the Twin Cities campus is also attached.

Akerman Hall Hanger Renovation & Akerman & Mechanical Engineering Life Safety Improvements, Twin Cities Campus

Akerman Hall is the home of the Aerospace Engineering and Mechanics (AEM) Department. AEM is an academic unit within the Institute of Technology offering students BS, MS, or PhD degrees. The undergraduate program is rated 4th in the nation by the Princeton Review's Gourman Report on Undergraduate Program and the graduate program is rated 8th in the nation in public universities (12th overall) by the National Research Council. AEM occupies approximately 35,000 square feet of Akerman's 60,000 square feet. Approximately 7,700 square feet will be remodeled. The first and mezzanine (second) floors of the hangar space will be completely repurposed to specifically provide flexible light industrial research labs, office and collaborative space. In addition the large open space on the main floor of the hangar is planned as flexible space easily changeable to a lecture or presentation venue. An accessible entry and toilets will also be provided.

Akerman Hall and old Mechanical Engineering comprised of approximately 200,000 square feet of space will be furnished with a fire alarm and a fire sprinkler suppression system.
The Akerman Hall Hangar Renovation project scored high among the projects that competed for funding from the 2008 Laboratory Improvement Appropriation funding. However, due to code deficiencies in the building and due to the amount of funding needed to appropriately renovate the Aerospace Engineering and Mechanics portion of Akerman Hall into an attractive, engaging, flexible, efficient, and collaborative learning environment, funding beyond what the 2008 Laboratory Improvement Appropriation could provide is needed. Aerospace Engineering and Mechanics partnered with Facilities Management to secure HEAPR funding for the building code deficiencies and secured supplemental funding from the Institute of Technology and an Internal loan from the Budget Office to provide the additional funding to repurpose the Akerman Hall Hangar space for the long term rather than invest in a short term fix.

Background Information:

Akerman Hall Hangar Renovation & Akerman & Mechanical Engineering Life Safety Improvements, Twin Cities Campus

Funding for the Akerman Hall Hangar portion of this project is funded from (a) the 2008 Laboratory Improvement Appropriation, (b) the Department of Aerospace Engineering and Mechanics (c) the Institute of Technology, and (d) internal loan to be repaid by Aerospace Engineering and Mechanics. Of the $2,020,000 portion of this project that is funding the Akerman Hall Hangar; $855,000 was approved as a part of the 2009 Capital Budget approved by the Regents in June 2008. A capital budget amendment for the balance of the funding in the amount of $1,165,000 is being presented for Regents review this month.

Funding for the Akerman & Mechanical Engineering Life Safety Improvements portion of the project is funded with $3,200,000 of 2009 HEAPR funds approved as a part of the 2010 Capital Budget in June 2009.

Schematic Plans for this project are being presented at the Committee meeting.

President's Recommendation for Action:

The President recommends approval of amending the Fiscal Year 2010 Capital Budget by $1,165,000 to provide additional funding for the Akerman Hall Hangar Renovation & Akerman & Mechanical Engineering Life Safety Improvements Project located on the Twin Cities Campus.
Facilities Committee

December 10, 2009

Agenda Item: Morris Campus Master Plan Amendments

- review □ review/action □ action □ discussion

Presenters: Vice President Kathleen O'Brien
Chancellor Jacqueline Johnson

Purpose:

□ policy □ background/context □ oversight □ strategic positioning

Present to the Board of Regents an amendment related to the updated Morris Campus Master Plan. The campus master plan supports the Morris campus mission and guides future land use, capital project decisions, historic preservation; and technological support for a 21st century living and learning environment.

Outline of Key Points/Policy Issues:

The master plan outlines a future for the Morris campus driven by its strategic plan, anchored in its undergraduate residential mission; reflective of the history of the Morel and Nichols Garden Campus vision; and connected to the broader community it serves in its land-grant role. The following goals and principles were defined by the Master Planning Steering Committee during the master planning process.

Morris Master Plan Goals:

- Establish and craft campus gateways. Create a sense of arrival.
- Build a clear system for self-orientation and navigation on campus that extends beyond the edge of campus and into the greater Morris community.
- Facilitate and encourage multimodal transportation on campus and throughout the surrounding neighborhood.
- Address the best solution for parking and building accessibility.
- Define and Activate a Sustainable Campus Management System to help achieve campus sustainability goals by 2010.
- Visually showcase UMM's green strategy, efforts, and accomplishments.
- Continuously advance communication and technology resources.
- Honor Miller Field and other historically significant sites on campus in accordance with the Historic Preservation Plan.
- Identify opportunities and constraints to future growth and expansion.
- Improve the student residential experience on campus, including day and night-time programming and circulation.

Guiding Principles - These principles guided the formulation of this revision to the Morris campus master plan.

- Arrival and Connection:
 - Clearly defined campus edges, visual cues, and entry points will be built into the new UMM Master Plan, setting the stage for campus arrival from all direction and installing a feeling of transition from community to campus.
 - A safe, multimodal transportation system, including pedestrian, cycle, automobile and bus networks will traverse campus and pass through the
gateways into the neighboring community, pushing sustainable transportation ideals beyond the campus edge.

- **Campus Transparency and Orientation:**
 - Opportunities to open clean, aesthetic view sheds will be paired with visual cues, systematic signage plans, and simplified circulation networks throughout campus, improving orientation and way-finding.

- **Perpetuate A Sustainable Strategy:**
 - A sustainable strategy will be initiated by establishing initial goals; such as energy self sufficiency by 2010, the development of a more localized food system, and improved storm water management.
 - The strategy will also include procedures for identifying new sustainability goals and tracking the campus’ progress towards them. This may be directed with reference to a structured environmental management system (EMS), such as those prescribed by the International Standards Organization.
 - GIS will continually supplement and enhance as a living, organic assessment tool, helping to a) identify opportunities for environmental action, b) set optimum sustainability objectives, c) monitor and assess the campus landscape structures and health, and d) record the progress of UMM’s Environmental management System (EMS).

Background Information:

Included in the docket materials is an executive summary of the Morris Campus Master Plan. The full plan can be found at: http://www.cppm.umn.edu/master_planning.html.

Board of Regents Policy: *Reservation and Delegation of Authority*, section VIII, subdivision 5, states “The Board of Regents reserves to itself authority to approve campus master plans and amendments thereto.”

In September 1992 the Chair of the Board of Regents and the President of the University appointed a Master Planning Steering Committee to “design and recommend a set of principles which will discipline and inspire the development of a master planning process.”

In 1993 the Board of Regents adopted the following four Campus Master Planning principles as developed by the master Plan Steering Committee:

- The principle of creating and maintaining a distinctive and aspiring vision for the physical development of each campus;
- The principle of enriching the experience of all who come to the campus;
- The principle of maximizing the value of existing physical assets while responding to emerging/changing physical needs;
- The principle of an inclusive, accountable, and timely process for creating and implementing a master plan vision.

In September 1996, the Board of Regents adopted a resolution directing the campus master plans reviewed earlier in the year to be used to “guide the future development of the campuses in accordance with the four planning principles and the policies, procedures and strategies therein will be the basis for all future master planning decisions.”

In the spring of 2008, and working with the Campus Resources and Planning Committee, (CRPC), Chancellor Johnson appointed a Master Plan Steering Committee and charged it with the task of updating the 1995 Morris Campus Master Plan. The Steering Committee issued an RFP and selected Oslund and Associates as the firm that would assist in the development of this plan. Oslund worked with the Steering Committee, which included members of the broader Morris community, over the course of the next year to develop and refine the plan. The final draft of the plan was approved by CRPC in the spring of 2009. In October of 2009, a summary of the plan was presented to the campus community and to the Morris community for their input and consideration.
TABLE OF CONTENTS

INTRODUCTION
- Table of Contents 3
- Executive Summary 5
- Process Overview 7
- 2008 Master Plan Goals and Principles 8
- 2008 Campus Plan 9
- 2008 Campus Plan - Phase 1 10
- 2008 Campus Plan - Phase 2 11
- 2008 Campus Plan - Phase 3 12
- 2008 Campus Plan - Phase 4 13
- Spatial Integration Matrix 14
- Sustainability Strategy 16
- Sustainability Recommendations 17
- Technology Assessment Recommendations 20

ANALYSIS I: UMM CAMPUS
- 21
 - Campus Edges and Walking Distances 22
 - Campus Edges and Entry Points 23
 - Pedestrian and Vehicular Circulation 24
 - Circulation and Parking 25

ANALYSIS II: CAMPUS COMPARISONS
- 27
 - UMM vs. University of St. Thomas 28
 - UMM vs. Drake University 29
 - UMM vs. Valparaiso University 30
 - UMM vs. Macalester College 31
 - UMM vs. Carleton College 32

ANALYSIS III: UMM GIS
- 33
 - Introduction: Morris Campus Metabolism 34
 - Elevation and Slope 36
 - Land Use/Land Cover (LULC), Natural Resources, and Habitat 38
 - Geotechnical Analysis 40
 - Stormwater Management 42
 - Wind Analysis 44
 - Solar Insolation Analysis 46

ANALYSIS IV - UMM SERVICES AND SUPPORT
- 49
 - Food Service Analysis 50
 - Travel Analysis 54
 - Waste Management 58
 - Utility Infrastructure 60
 - US Green Building Council LEED® Certification 61
 - UM-Morris’s Carbon Footprint 62
 - Sustainability Conclusions 63

TECHNOLOGY ASSESSMENT AND ADVANCEMENT
- 65
 - Existing Technology Infrastructure 66
 - Technology Recommendations 67
 - Cabling Infrastructure 67
 - Wide Area Network and Data Centers 68
 - LAN and WLAN Networks 69
 - Phone System 70
 - AV-Multimedia Systems 71

CAMPUS PLANNING CHARRETTE
- 73
 - Charrette Group ‘A’ 74
 - Charrette Group ‘B’ 75
 - Charrette Group ‘C’ 76

MASTER PLAN SCHEME OPTIONS
- 77
 - Option 1 - The Clearing 78
 - Option 2 - The Hook 79
 - Option 3 - The Loop 80

HYBRID PLAN SCHEMES
- 81
 - Hybrid Scheme A 82
 - Hybrid Scheme B 83
 - Historic Preservation Considerations 84

FINAL CAMPUS PLAN
- 85
 - Campus Plan 2008 87
 - 2008 Campus Plan - Phase 1 88
 - 2008 Campus Plan - Phase 2 89
 - 2008 Campus Plan - Phase 3 90
 - 2008 Campus Plan - Phase 4 91

APPENDIX I
- 93
 - Campus Photo Survey 94
 - Steering Committee Pictures 102

APPENDIX II
- 103
 - UMM Carbon Plan 104
 - 2006 Strategic Plan 107
 - 2007 Campus Energy Analysis 134
 - Post Gateway Space Planning Task Force Report 148

APPENDIX III
- 157
 - Sustainability Plan References 158
Because master planning is a specialty at oslund and assoc. (OAA), we are intimately familiar with the best methodologies and how those can be joined with campus goals and an overall vision to create a dynamic master plan. We passionately advocate to our clients the critical importance of the master plan as an “organic, living document,” one that must be relevant immediately and remain so for years to come. This is not a “New Master Plan — it is an evolution of the 1995 Master Plan, which Tom Oslund helped to develop while working at Hammel Green and Abramson, Inc. It has been updated to account for changes that have occurred on campus since 1995, and it has been modernized to reflect current campus needs, and ideals of today. The 2008 Master Plan is designed to be future-focused, flexible, phased for implementation.

At OAA, the idea of shaping a campus space for current and future generations entails not only providing places for social, physical, and intellectual interaction, but it is also about sculpting these same open spaces into artful forms that act as a breath within their given context. We feel that through design, there exists the possibility of discovery - a discovery that comes from gracefully combining an attuned observation of contextual considerations, cultural understandings and economic realities within a deliberate programmatic focus. This is the basis for all creative expression, and the cornerstone of our design philosophy.

OAA, working in concert with Kandiyohi Development Partners (KDP) and Elert & Associates, crafted a master plan document that is far-reaching and comprehensive in nature. Analysis was completed by all the team members at the outset of the project, studying environmental influences, building siting, traffic flow, parking, solar orientation, and many more elements. This information was compiled and synthesized and prepared for presentation. Next, an on-site design charrette and initial review of master plan guidelines and principles was held in Morris with members of the campus master planning committee. At this charrette, committee members were asked to “design the campus”, as well as consider how the guidelines and principles should affect their designs. 3 groups were created and assigned to draft their respective plans. Each group then assigned a spokesperson that presented their thoughts and perspectives on how they would shape the master plan.

OAA then synthesized all this information, including the analysis done by KDP, to offer the committee 3 distinct schemes for consideration. The analyses, a review of the charrette process, goals and principles, and the 3 initial schemes were presented to the master planning committee and representatives from the State Historic Preservation Office in December 2007. Taking the feedback from these presentations, OAA started refining the plans into a hybrid scheme, while KDP began creating GIS maps and studying their analysis to interpret and reveal the best sustainability recommendations for the Morris campus. The first hybrid scheme was presented in January 2008. Again, taking feedback from the committee, the hybrid was further refined.

At this point in the process we began to integrate the Historic Preservation plan directives into the master plan, ensuring that we adhered to the recommendations of the previously created document. In late March 2008 we brought a second hybrid to Morris for discussion with the Historic Preservationists, as well as the master planning committee. After this meeting we refined the hybrid into its final master plan form. We also presented a review of the technology analysis that was being completed by Elert & Associates.

Additional comments were taken and used to refine small pieces of the master plan. Drafts of KDP’s portion of the master plan, as well as Elert’s full analysis and recommendations were sent to Morris for review at the beginning of April 2008. Following the receipt of comments on the aforementioned components, a final comprehensive draft was crafted for review and edited into what is now before you.

We feel this master plan will offer the University of Minnesota Morris a clear guide to its future development, its decisive and precedent-setting move towards self-sufficiency and sustainability, and if stewarded with deep conviction, will create a campus rooted in the DNA of it’s place.
Each master plan begins with the exploratory process of analysis, interpretation, and synthesis of the gathered information. At the University of Minnesota Morris (UMM) we began with a macro view, zooming in over time to look at smaller and more detailed views and influences on and surrounding campus. These analyses were conducted by both Oslund and Assoc. (OAA), Kandiyohi Development Partners (KDP), and Elert & Associates. Each consultant was charged with the study of a specific realm - site, environment, and technology - and all the interlocking and overlapping instances that came along with those studies. OAA looked at the campus as an entity that stands within the borders of a small Midwestern town. OAA also evaluated how various influences affected the campus within this context - where the edges of campus are perceived to be, traffic patterns in and around campus, impervious surface, open space, historic influences, and a photo analysis of campus spaces - to name but a few.

KDP began exploring more data-intensive influences that related to sustainability and how that can be integrated into the future long-range plan for UMM. Elements such as geology, solar insolation, drainage, depth to bedrock, land cover, wind direction, and watersheds; among others, were compiled into GIS maps that allowed for detailed interpretation. Elert began comparing technology across peer institutions in the areas of infrastructure cabling, data centers, LAN, wireless LAN, phone systems, and AV Multimedia.

After analysis is complete, the process moves into schematic design. Schematic design involves the synthesis of information gathered in the previous phase with new understandings gained from steering committee meetings, on-campus charrettes and general observation into schematic ideas for how the campus might be shaped. Three distinct options were presented at the conclusion of this phase for comment and refinement.

The Design Development phase takes the favored concept or ideas from multiple concepts and generates a single, refined plan for review and commentary. During this phase, more and more detail is added to the plan so that it addresses specific needs identified during earlier phases.

As the process wraps up, a final master plan design is reviewed and agreed upon and then the crafting of this document begins. The process closes out with the submittal of this document for review and refinement, and finally the presentation of the final document to the Steering Committee and the Chancellor.

The process diagram (below) was developed to help readers understand the complex interrelationships that were present during this master plan update, and how they work together and influence each other. Everything in the master plan was driven by the Goals & Principles that were agreed upon by the master planning committee at the outset. With this understanding, it can be seen diagrammatically, that all things move outward from the Goals & Principles circle.

The surrounding circles are placed in order from left to right in order of spatial magnitude. For instance, the Historic Preservation Plan is incredibly spatial in its recommendations and desires, as is the Campus Plan. The Sustainability Strategy, while influencing spatial decisions, is inherently less spatial as a singular entity. The same can be said for the Information Technology Advancement category.

As the reader moves through the document, this diagram will be seen in the lower corner of certain pages. It can be seen in these instances as a reference point, telling the reader which component of the plan is being discussed and the reader can also determine which other factors influenced the particular component they are reading about.

Also, the colored dots are used, singularly, as reference points throughout the Recommendations section of the master plan. For example, in the Sustainability Recommendations the dots are green, but where there are instances of the Sustainability Recommendations referencing a Campus Planning/Spatial strategy, a red dot is added and that section has bold type - making it easier to cross-reference. The same technique holds true in the other Recommendations sections.
2008 MASTER PLAN GOALS AND PRINCIPLES

The following goals and principles were defined by the campus planning committee during the initial stages of the master planning process. The integration of recommendations related to Campus Planning, Historic Preservation, Sustainability, and Technology Advancement objectives directed the evolution of a plan for Morris’ future that also reflects the history of Morel & Nichols’ Garden Campus.

MASTER PLAN GOALS

- Establish and craft campus gateways. Create a sense of arrival.
- Build a clear system for self-orientation and navigation on campus that extends beyond the edges of campus and into the greater Morris community.
- Facilitate and encourage multimodal transportation on campus and throughout the surrounding neighborhood.
- Address the best solution for parking and building accessibility.
- Define and Activate a Sustainable Campus Management System to help achieve campus sustainability goals by 2010.
- Visually showcase UMM’s green strategy, efforts, and accomplishments.
- Continuously advance communications and technology resources.
- Honor Miller Field and other historically significant sites on campus in accordance with the Historic Preservation Plan.
- Identify opportunities and constraints to future growth and expansion.
- Improve the student residential experience on campus, including day and night-time programming and circulation.

GUIDING PRINCIPLES

ARRIVAL and CONNECTION:
- Clearly defined campus edges, visual cues, and entry points will be built into the new UMM Master Plan, setting the stage for campus arrival from all directions and instilling a feeling of transition from community to campus.
- A safe, multimodal transportation system, including pedestrian, cycle, automobile and bus networks will traverse campus and pass through the gateways into the neighboring community, pushing sustainable transportation ideals beyond the campus edge.

CAMPUS TRANSPARENCY and ORIENTATION:
- Opportunities to open clean, aesthetic view sheds will be paired with visual cues, systematic signage plans, and simplified circulation networks throughout campus, improving orientation and way-finding.

PERPETUATE A SUSTAINABLE STRATEGY:
- A sustainable strategy will be initiated by establishing initial goals; such as energy self-sufficiency by 2010, the development of a more localized food system, and improved storm water management.
- The strategy will also include procedures for identifying new sustainability goals and tracking the campus’ progress towards them. This may be directed with reference to a structured environmental management system (EMS), such as those prescribed by the International Standards Organization (e.g., ISO 14001).
- GIS will be continually supplemented and enhanced as a living, organic assessment tool, helping to a) identify opportunities for environmental action, b) set optimum sustainability objectives, c) monitor and assess the campus landscape structure and health, and d) record the progress of UMM’s Environmental Management System (EMS).
The spatial organization of the Campus Plan was driven by Master Plan Goals and Principles, Historic Preservation Plan Recommendations and Sustainability Strategies.

The final master plan for the University of Minnesota Morris is a very strong representation of the collaborative nature that this planning process offered. Many thoughts from multiple constituencies found their way into this final design.

We feel that this plan offers the University a strong roadmap for a sustainable and forward-thinking, precedent-setting future. By reducing the campus entry points and enhancing those remaining, by clarifying the loop road circulation system, and by introducing roundabouts at key decision points, and by adding clear signage at these points of reference; campus wayfinding will certainly be improved.

A new quad space, surrounded by uses that reflect the campus commitment to sustainability and the 21st century, creates a new gateway and front door to the campus. The new green residence hall is a focal point, visually showcasing the green commitment to prospective students.

Campus walkability and connection to the town beyond has been improved and focused. Parking has been reconfigured, as has been access to the RFC. The re-alignment of 2nd Street is a strong move towards integrating both sides of the campus into one contiguous whole. This also helps reduce campus through-traffic and offers a place for stormwater gardens - another locale to showcase the sustainability practices in place on campus.

Wetlands have been recreated. Facilities services have been concentrated. Jewel box greenhouses line the new quad and offer iconic focal points near the entry roundabout.

We feel this plan will offer Morris a clear framework for expansion and growth during the next 20 years. As with any master plan, the document is to be considered organic and flexible to change along with the evolution of the campus.

The spatial organization of the Campus Plan was driven by Master Plan Goals and Principles, Historic Preservation Plan Recommendations and Sustainability Strategies.

2008 CAMPUS PLAN
Phase 1 focuses on the development of the new Highway 59 Entry Drive and a new 'Green Quad', both of which are surrounded by uses that reflect the campus commitment to sustainability.

Highway 59 Entry Drive:
- Re-alignment and extension of Prairie Lane to the new Green Quad.
- Construction of a new campus entry gate on Highway 59 and the traffic circle welcome point.
- Restore the wetland to the north of the baseball diamonds. Design and construct a series of swales to drain into the restored wetland, and create new wetlands north of the east parking lots.
- Establish trees and plantings along the new entry drive following sustainability guidelines and recommendations in the Historic Preservation Plan.

New Green Quad
- Renovate existing roads/paved surfaces and construct new road segments to complete a one-way loop around the quad. This includes street parking areas along the south edge of the quad.
- Construct the new Green Dormitory at the east end of the quad.
- Re-locate the transportation garage and facilities storage buildings from the north parking lot to new facilities buildings area adjacent to the practice field.
- Construct the new anaerobic digester and compost facilities in the new facilities buildings area.
- Remove the central parking lot and expand the north parking lot. Construct planted infiltration basins in the islands of the new lot to infiltrate storm water.
- Construct a row of ‘jewel box’ conservatory greenhouses along the north edge of the new quad to house campus food production programs.

Pedestrian Circulation
- Remove the north segment of Martin Luther King Jr. Drive and close the 7th Street Entry to vehicular traffic. Restore the north and west windbreaks.
- Re-establish the northern segment of the historic North-South Axis as a pedestrian and bike route to the center of campus. Include orientation signage at the new entry point.
Phase 2 focuses on the re-alignment of 2nd Street towards the establishment of a loop road around campus. This will foster a more pedestrian-oriented campus environment and build safer connections to the RFC for both community and campus users.

Parking and Vehicular Circulation:
- Re-align 2nd Street to connect to the new Highway 59 Entry Drive. Establish a new entry gate with orientation signage at College Avenue.
- Construct the new drop off loop and South Parking 'A' lot to accommodate parking for accessibility to the RFC.
- Construct the RFC entry plazas to calm traffic and orient pedestrians travelling between the campus and the RFC.
- Connect pedestrains from the North-South Axis at the RFC to the campus residence halls and the new dormitory via the new Orchard Walk.
- Establish a new pedestrian entrance plaza, including orientation signage, at 3rd Street and College Avenue.

Stormwater and the Environment
- Construct a new wetland for storm water retention and filtration south of the baseball diamonds.
- Build the RFC Stormwater Gardens to infiltrate stormwater and increase the visibility UMM’s commitment to environmental sustainability.
- Restore the Elm Grove and plant boulevard trees along the new Alumni Drive loop road following the recommendations outlined in the Historic Preservation Plan.
Phase 3 focuses on the restoration of the Historic North-South Axis and the completion of a campus-wide pedestrian/bike circulation system.

Pedestrian Circulation
- Restore the North-South Axis through central campus. The north and south portions of the axis are pedestrian/bike paths. The character of the axis should follow historic streetscape patterns where vehicular traffic is permitted through the historic district.
- Construct a driveable plaza that maintains ties to the historic streetscape character between Camden and Social Science. Design this space to calm traffic and promote a safe, pedestrian-oriented environment.

New Facilities
- Remove Gay Hall to re-open the North-South Axis.
- Construct a new residence hall (to replace Gay Hall) on the south edge of the Green Quad. Green building principles, should be employed, similar to the design principles in the new dormitory at the East end of the Quad.
- Construct the new Fine Arts Auditorium Addition.
Phase 4 focuses on the expansion of the Library and the development of a 4th Street Entry welcome point to enhance the arrival experience on the West side of campus.

Parking and Vehicular Circulation:
- Construct a welcome plaza loop in front of Briggs Library to calm traffic and orient visitors arriving from the West.
- Convert Cougar Circle to a one-way loop to improve pedestrian safety. Maintain and restore the historic character of the streetscape.
- Add street-angled parking spaces to the north side of Briggs Library for accessibility.

New Facilities:
- Design and build an addition to Briggs Library to enhance the arrival experience to campus from the 4th Street Entry (i.e., a new ‘front door’).
- Remove the temporary buildings on the north side of Cougar Circle and restore the historic nature of the Pine Hill Glen open space.
Spatial Integration Matrix

The Spatial Integration Matrix identifies the goals and recommendations of the Master Plan, Sustainability Plan, and Historic Preservation Plan that are spatially oriented, and links them to their incorporation into the 2008 Campus Plan.

Campus Plan Goals

<table>
<thead>
<tr>
<th>Goal</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrival</td>
<td>Establish and craft campus gateways. Create a sense of arrival.</td>
</tr>
<tr>
<td>Navigation</td>
<td>Build a clear system for self-orientation and navigation on campus that extends beyond the edges of campus and into the greater Morris community.</td>
</tr>
<tr>
<td>Transportation Alternatives</td>
<td>Facilitate and encourage multimodal transportation on campus and throughout the surrounding neighborhood.</td>
</tr>
<tr>
<td>Sustainable Parking and Accessibility</td>
<td>Address the best solution for parking and building accessibility.</td>
</tr>
<tr>
<td>Visible Sustainability</td>
<td>Visually showcase UMM’s green strategy, efforts, and accomplishments.</td>
</tr>
<tr>
<td>Residential Life</td>
<td>Improve the student residential experience on campus, including day and night-time programming and circulation.</td>
</tr>
<tr>
<td>Sustainability Goals</td>
<td>Activate a sustainable campus management system.</td>
</tr>
<tr>
<td>Historic Preservation</td>
<td>Honor historically significant sites in accordance with the Historic Preservation Plan.</td>
</tr>
</tbody>
</table>

Campus Plan Incorporation

<table>
<thead>
<tr>
<th>Goal</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main vehicular entry points are defined with new entry gates. Curving drives from the 4th Street and Highway 59 entrances lead to traffic calming circles/welcome points that direct traffic. North and South Loop roads concentrate traffic flow around the campus to perimeter parking lots. Vehicular access and parking in the central quads is limited to accessibility or short term parking and passenger drop off, thereby maintaining a pedestrian-oriented campus core.</td>
<td></td>
</tr>
<tr>
<td>A new bike and pedestrian circulation system crosses the Morris Campus. Bike and Pedestrian entry points are enhanced with signage and campus-community transition plazas at the 7th and 3rd Street entrances.</td>
<td></td>
</tr>
<tr>
<td>The Campus Plan focuses on a balance between the improved sustainably and appearance of perimeter parking lots and handicapped accessibility parking near buildings with the greatest community use. This includes the Library, Student Center, RFC, Fine Arts Addition, and Community Services Building.</td>
<td></td>
</tr>
<tr>
<td>The Highway 59 entrance drive passes through storm water swales and restored wetlands to a new Campus Quad that features a Green Dormitory. Central orchard/garden plots and a row of conservatory greenhouses along the North edge of the quad exhibit Morris' sustainable food production strategy.</td>
<td></td>
</tr>
<tr>
<td>The North-South Axis and Orchard Walk pathways give priority to safe bicycle and pedestrian circulation between campus residence halls, the RFC, parking lots, classroom buildings, and the neighboring community.</td>
<td></td>
</tr>
<tr>
<td>See Sustainability Strategies, below.</td>
<td></td>
</tr>
<tr>
<td>See Historic Preservation Plan recommendations, below.</td>
<td></td>
</tr>
</tbody>
</table>

Sustainability Strategy

<table>
<thead>
<tr>
<th>Goal</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope Stability, Native Plant Communities and Biodiversity</td>
<td>Re-forest upland areas and restore lowland grass and pasture to native prairie.</td>
</tr>
<tr>
<td>Storm Water Management</td>
<td>Restore the wetland to the North of the baseball diamonds. Design and construct a series of swales to drain into the restored wetland (above). Create new wetlands North of the East Parking Lots and South of the Baseball Diamonds. Maintain the existing NWI emergent marsh/vet prairie along Highway 59.</td>
</tr>
<tr>
<td>Windbreaks</td>
<td>Enhance coniferous plantings on the North and West sides of buildings.</td>
</tr>
<tr>
<td>Sustainable Travel</td>
<td>Create a hierarchy of roads, bike trails, pedestrian walkways, and campus entrances that enhance the walking / biking experience.</td>
</tr>
<tr>
<td>Local Food System</td>
<td>Integrate on-campus greenhouses into the campus food system.</td>
</tr>
<tr>
<td>Waste Reduction and Renewable Energy</td>
<td>Construct a covered, open-air compost facility and an anaerobic digester facility into the campus waste system to dispose of organic waste and produce renewable energy.</td>
</tr>
<tr>
<td>The Campus Plan illustrates the proposed restoration of the historic North-West windbreaks, The Southwest Grove, Elm Grove, Spooner Grove and Hillside, and the East Terrace.</td>
<td></td>
</tr>
<tr>
<td>These areas are included and reserved on the Campus Plan as part of an effort to implement sustainable storm water best management practices (BMPs) recommended in the sustainability strategies.</td>
<td></td>
</tr>
<tr>
<td>The Campus Plan illustrates the proposed restoration of the historic North-West windbreaks and conifer groves.</td>
<td></td>
</tr>
<tr>
<td>The North-South Axis and Orchard Walk pathways give priority to safe bicycle and pedestrian circulation between campus residence halls, the RFC, central campus, and the community.</td>
<td></td>
</tr>
<tr>
<td>Conservatory-like greenhouses line the North edge of the new campus quad (D).</td>
<td></td>
</tr>
<tr>
<td>The compost facility (F) is located in the South facilities area to minimize odor in the central campus area. The digester is also located in the Southeast facilities area near the existing heating plant (K).</td>
<td></td>
</tr>
</tbody>
</table>

Master Plan Goals, and the recommendations of the Historic Preservation and Sustainability Plans have a direct influence on the spatial organization of the Campus Plan.
<table>
<thead>
<tr>
<th>GOALS, STRATEGIES and RECOMMENDATIONS</th>
<th>CAMPUS PLAN INCORPORATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPATIAL ORGANIZATION: Preserve the historic open spaces within the historic district and use an orthogonal approach to planning.</td>
<td>Where practical, historic spaces were retained and, in some cases, enhanced. The removal of two temporary buildings rejuvenates the Pine Hill Glen area. Miller field is defined as a clearing in a restored Elm Grove. The Engineering Quad remains as open space – creating a mirror image of the Historic Mall in the New Quad.</td>
</tr>
<tr>
<td>VEGETATION: Restore historic windbreaks. Retain and replace street trees and historic plantings in accordance with historic patterns.</td>
<td>The north and west windbreaks have been restored. Historic boulevard patterns were retained and extended where new street trees and sidewalks were added.</td>
</tr>
<tr>
<td>CIRCULATION: Keep existing roads, sidewalks, curbing, and boulevards at their historic form whenever possible. Restore roadways that have been altered or lost, when feasible. Provide a clear public vehicular route around and through campus.</td>
<td>The path of the historic North-South axis was restored as a primary bike and pedestrian access route – this fosters the historic aesthetic while advancing Morris’ sustainability strategy and circulation goals. The tree-lined Highway 59 entrance drive gently curves through fields and restored wetlands – a complement to the 4th Street drive on the West side of campus. 2nd Street was realigned to yield an orthogonal spatial organization, and to slow traffic around the RFC. The perimeter drive defines a new edge to the expanding campus, and separates the major vehicular paths from a pedestrian-oriented environment at the campus core.</td>
</tr>
<tr>
<td>PARKING: Provide parking in perimeter lots rather than near the center of the historic district and its most important spaces. Design parking to be parallel to adjacent buildings, roads, or walkways. Add landscaping and islands.</td>
<td>Parking in perimeter lots was enhanced with islands for storm water infiltration and screening. Handicapped accessibility parking was added near buildings that are frequented by the community, such as the Library, Student Center, RCF, Fine Arts Addition, and Community Service Building.</td>
</tr>
<tr>
<td>4TH STREET ENTRY: Retain the configuration, scale, dimensions, and alignment of the road, sidewalk, grass areas, and tree structure. Restore the shape of the symmetrical entrance drive as it divides west of Briggs Library.</td>
<td>The configuration and design of the 4th Street entrance drive was maintained to a new traffic circle. Building additions and the extension of Martin Luther King Jr. Drive limit the feasibility of restoring the roadway to its historic form. The traffic circle brings the continuity of the drive into the Mall area re-introduces symmetry to the present-day 3-way intersection.</td>
</tr>
<tr>
<td>MILLER FIELD and SPOONER GROVE: Retain what remains of the flat open plane, with no additional intrusions. Re-establish boulevard trees along 2nd Street. Maintain and rejuvenate existing pines, spruce, and crabapples.</td>
<td>The historic clearing of Miller field is defined and visually strengthened with restored Elm Grove and Spooner grove plantations. Boulevard trees are planned for the 2nd Street realignment. The East-West pedestrian-bike way passes through the restored plantings of the historic campus, and transitions to the new ‘Orchard Walk’ at the North-South Axis. Lined with apple trees, this part of the walkway exhibits Morris’ localized food production strategy and the University’s progress in fruit breeding and research.</td>
</tr>
<tr>
<td>NORTH-SOUTH AXIS: Should Gay Hall be removed in the future, reconstruct the street to 2nd Street. Retain the opening in the North Windbreak. Restore the character of the axis between Camden and Social Science, including essential elements of historic streetscape patterns</td>
<td>The South portion of the axis is restored to a pedestrian-bike path that connects the athletic facilities to central campus. The historic alignment of the axis extends through the North Windbreak and Memorial Grove to the original 7th Street Entry. The historic streetscape is restored at Camden Hall, where limited vehicular traffic is controlled and calmed with roadway paving and bollards.</td>
</tr>
<tr>
<td>ENGINEERING QUAD: Retain the quad as open space. Extend the Highway 59 entrance drive along the northern edge of the Quad. This will require removal of some of the spruce in the north window. Reconfigure the Central Parking Lot and eliminate elements that visually distract from the barn’s distinctive appearance when approached from Highway 59.</td>
<td>The Engineering quad is retained as an open space that mirrors the Historic Mall. Additional improvements to this area, such as spruce grove remediation and Saddle Club barn restoration, will help to enhance this expanding part of campus while preserving its historic aesthetic. The central parking lot was replaced with orchards/gardens for campus food production, with limited parking along the south edge for short-term parking and handicapped accessibility. This quad exhibits a progressive green strategy in a historic context.</td>
</tr>
<tr>
<td>FARM BUILDINGS AREA: Remove the Transportation Garage, shifting major service functions to the Heating Plant area of campus. Use its site for open space, part of the North Windbreak, and/or part of a new North Parking Lot.</td>
<td>Major service buildings were re-located to the South facilities area. The historic seed house is retained along the north edge of the new Avenida de Cesar Chavez within the extended windbreak and boulevard trees.</td>
</tr>
<tr>
<td>PINE HILL GLEN: Retain the zone’s open lawn and ground plane to retain its traditional functions.</td>
<td>The removal of the temporary science buildings restores this open space and its function for campus events.</td>
</tr>
</tbody>
</table>
New Sustainability Strategies will affect the Campus Plan, as green infrastructure is proposed for the future. These initiatives will also drive the advancements of campus technology resources.

CAMPUS METABOLISM ANALYSIS

Any college campus is very much like a self-contained organism, with the movement in and out of large volumes of material and energy inputs, internal processes and by-product generation. In that sense, it is like the metabolism of an individual organism, but aggregated across all of the metabolisms within it, with metabolism defined as the series of reactions to various nutrients and stimuli that result in the sustaining of the organism over multiple generations. College campuses also need to sustain themselves, and they do that by reacting to the characteristics of their campus site, inputs of materials, energy and human intellect in ways that are designed to meet their institutional mission and perpetuate their existence.

The Metabolism Diagrams (left) provide an illustrative comparison of the Morris Campus Metabolism before (top) and after (bottom) implementing sustainable management strategies described in this plan (following pages). The size of the arrows represents the relative size of the material or energy flow through campus. Traffic will decrease as alternatives to personal vehicles increase (purple arrows). The input of food from external sources (orange inputs) decreases as food is procured locally and grown on campus. Food waste (orange outputs) decreases with the implementation of compost and hog facilities. Commercial waste reductions (red outputs) will also follow effective implementation and promotion of recycling programs and sustainable resource use. Energy from fossil fuels (yellow) decreases with additional renewable energy projects, such as the implementation of additional wind turbines, solar panels, and geothermal heat pump systems. Wasted stormwater will be reduced with the implementation of stormwater Best Management Practices (BMPs). These efforts combined will lead to a decrease in the overall carbon footprint of the Morris campus (grey arrows).

Recommended sustainability strategies are summarized on the following pages. These strategies follow a careful analysis the Morris Campus Metabolism using Geographic Information System technology (GIS) and available campus data. Red dots and bold type indicate strategies that are spatial in nature and relate to the campus plan from a sustainability perspective.
Elevation and Slope

- Decrease erosion on areas with steep slopes by planting specially adapted native species as suggested in Appendix 6: Species List of the U.S. Fish & Wildlife Service Morris Wetland Management District Comprehensive Conservation Plan and Environmental Assessment.

- The general slope of the campus to the east and south creates eastern and southern aspects which present opportunities for solar thermal or solar electric generation. (Refer to the Solar Insolation Analysis section later in this document).

- Much of the campus landscape is relatively steep (up to 12%), therefore, it is important to implement stormwater best management practices in order to increase infiltration, improve water quality and decrease water velocity before water reaches the Pomme de Terre River. (Refer to the Stormwater Analysis section later in this document).

- While slope analysis using the 1 to 24,000 scale 30m resolution DEM is useful for regional planning it is less useful for planning at a local scale. It is recommended that two foot contours be surveyed and stored digitally for the UM-Morris campus and surrounding land owned by the Regents of the University of Minnesota. This will be useful for many future environmental and physical planning endeavors.

Land Use-Land Cover, Natural Resources and Habitat.

- Existing native plant communities of moderate biological significance along the Pomme de Terre River present an opportunity to further augment the corridor of biological diversity between campus and the river. Upland areas could be reforested and lowland grass and pasture land converted to native prairie. We recommend that the LUM community initiate the development of this corridor and lead the Morris community in its implementation.

- Increasing biodiversity from the boundary of the City of Morris through campus to the Pomme de Terre River offers a design opportunity to transition from an urban, formal aesthetic to a natural, informal aesthetic. This differentiation would help emphasize the West side of campus as the “front door” of campus.

- Prioritize the planting of vegetation that provides food and habitat for wildlife as suggested in Appendix 6: Species List of the U.S. Fish & Wildlife Service Morris Wetland Management District Comprehensive Conservation Plan and Environmental Assessment.

- Update the campus tree survey for completeness.

- There is a large area of moderately significant plant biodiversity immediately adjacent to the campus where it is likely to experience impacts from campus activities. The University should consider “adopting” this natural area for ongoing study, perhaps benchmarking the area’s health as a biodiversity resource with other smaller, adjacent areas of moderate biodiversity value.

Geo-tech Analysis

- Stormwater should be managed to ensure that stormwater contaminants do not reach the shallow aquifer. The University should also have a hazard mitigation strategy for spills or leaks that may occur in areas with a shallow depth to the surficial aquifer, especially since parts of campus are overlain by porous soils and glacial deposits.

- While the underlying surficial geology of the Morris campus appears well suited for geothermal heat pumps, it is recommended that the University maximize use of its combined heat and power (CHP) system (also known as cogeneration). CHP systems generate electricity and thermal energy in an integrated system— in Morris’ case, from biomass, a renewable energy resource. To increase efficiency and reduce costs, the entire campus should maximize use of thermal energy recovered from the CHP system for its heating and cooling needs. Should the campus maximize its thermal energy efficiency (depending on the drain of the parasitic load on energy production), it is recommended that the University consider either expanding its CHP system or explore other options such as geothermal heat pumps.

Stormwater Analysis.

- **Restore the wetland north of the baseball diamonds.** It appears from the National Wetlands Inventory (NWI) that the wetland was likely an emergent marsh, however, a professional restoration ecologist should be consulted to determine the original wetland type and hydrologic regime, as well as for assistance in plant selection and maintenance. A study should be completed prior to restoration of this wetland, or other infrastructure creation described below, that identifies all subsurface drainage, specifically agricultural drain tile.

- **Create a series of dry to wet swales from west to east that drain to the restored wetland.** Swales consist of open vegetated channels and filter and slow stormwater (Shaw and Schmidt 2003). See Shaw and Schmidt (2003) for a list of native plants best suited for each type of swale and other BMPs discussed below. These swales would move from high to moderate slopes, and from well drained to poorly drained soils. The swales should have mild longitudinal and side slopes, or check dams where necessary.

- Although no major flooding has been observed near the storm sewer outlet near the baseball diamonds (R. Thompson 2007, pers. comm., Dec 11), it is recommended to move the outlet back across the road into the swale/wetland complex. This will prevent possible flooding, reduce pollutants, and better attenuate flows. Consulting with a licensed professional civil engineer and licensed professional ecologist will be necessary.

- **Creating a wet prairie or an emergent wetland to the west of the baseball diamonds** could provide substantial attenuation of stormwater runoff peak flow rates prior to stormwater discharge into the existing stormwater management system. Further site investigation would be necessary to validate this recommendation. An existing drainage area south of the baseball diamonds would be well suited for the creation of a wet prairie or emergent marsh. This would reduce contaminants, create habitat, and attenuate stormwater runoff.

- **An existing NWI emergent marsh/wet prairie along the western edge of Highway 59 could benefit from enhancement through native plantings and proper maintenance to ensure success of native plants.** It is likely that it is dominated by invasive plants and may not function optimally for habitat, water attenuation, and pollutant remediation due to the agricultural and urban land uses surrounding it. This area has a shallow depth to groundwater. Restoring natural ecological function is important to limit contamination from stormwater runoff.

- **Evaluate the volumes and water quality of water being discharged into the Pomme de Terre from the campus and analyze the discharge in the context of the larger area, including any discharge into the river by the City of Morris.**

- **The large volumes produced by the sump pump in the Central Heating Facility could be treated and considered for cooling at the biomass gasifier cooling tower.** The sump pump water may have to be treated, but additional research and testing would have to occur to determine the feasibility.
SUSTAINABILITY RECOMMENDATIONS

- A distributed system of harvested gray water integrated into the various campus buildings and sites would be the preferred source for water irrigation services. Over time, the systems can become self-managing through the use of water/rain/moisture sensors, and solar pumps.
- The manual consists of 40 BMPs that are aimed at managing stormwater pollution for small urban sites in a cold-climate setting and is divided into the following sections:

 - Runoff Pollution Prevention
 - Impervious Surface Reduction
 - Street Design
 - Gul-de-Sac Design
 - Parking Lot Design
 - Turf Pavers
 - Green Roofs
 - Housekeeping
 - Pavement Management
 - BMP Maintenance
 - Landscape Design and Maintenance
 - Animal Management
 - Construction Practices
 - Grading
 - Sequencing
 - Vehicle Tracking Pad
 - Soil Erosion Control
 - Mulches, Blankets, and Mats
 - Vegetative Methods
 - Structural Methods
 - Sediment Control
 - Silt Fences
 - Inlet Protection
 - Temporary Sedimentation Basins/Traps
 - Check Dams
 - Stormwater Treatment BMPs
 - Infiltration Systems
 - On-Lot Infiltration
 - Infiltration Basins
 - Infiltration Trenches
 - Filtration Systems
 - Bioretention Systems
 - Surface Sand Filters
 - Underground Filters
 - Filter Strips
 - Constructed Wetlands

- BMPs in Series
- Stormwater Wetlands
- Wet Swales
- Retention Systems
- Wet Ponds
- Extended Storage Ponds
- Wet Vaults
- Detention Systems
- Dry Ponds
- Oversized Pipes
- Oil/Grit Separators
- Wet Stormwater System
- Flow Control Structures
- Permeable Weirs
- Flow Splitters
- Proprietary Flow Control Devices
- Regulation of Water Quality

Wind Analysis

- Evaluate the potential for existing and future buildings to use natural ventilation systems based on prevailing winds; this strategy could be particularly useful for reducing summer peak electrical loads to cool buildings when activity levels on campus are relatively low. The strategy includes focusing on placement of air intake systems and operable windows on the side of buildings facing the prevailing winds and creating corresponding outlets for ventilation on the opposite side. With new construction, natural ventilation can be incorporated into mechanical systems to supplement their air flow and reduce the need for energy.

- November through February wind roses should inform tree planting, including dense coniferous trees as a wind break as a suggested species choice.

- Temporary or permanent meteorological towers should be erected to evaluate sites proposed for future wind turbines. While turbines have anemometers on the leeward side of the nacelle, the wind speed data are often significantly affected by the turbulence created from the turbine blades. Accurate wind data is essential for validating and predicting energy production estimates.

- Develop a site-specific wind resource grid for use in optimizing the placement of future wind turbines.

Solar Insolation Analysis

- Create a solar strategy that new or remodeled buildings be outfitted to be “solar ready”. That means structures are built with the capacity to carry the additional weight of a solar thermal or electrical system and electrical designs are installed that will facilitate bringing electrical power into the interior of the structure for use. This could be phased with buildings that are in high solar area zones, such as Gay Hall, the Science building and the M, L, K dormitories adjacent to the east parking lot.

- Solar thermal or solar electric installed in strategic locations can reduce energy costs, the campus carbon footprint, and provide demonstration, learning, and research opportunities for staff and students.

- Solar lighting or signage is an opportunity at the gateway, or throughout the campus landscape.

- Deciduous trees planted along the southern facades of buildings will help decrease solar gain in summer months. When leaves drop in fall, light and thermal energy passes through the tree canopy to increase solar insolation.

Food Service Analysis

- Include in the next food service contract a requirement that the contractor must provide data on procurement and carbon footprinting to the best extent possible.

- Develop an ongoing research project on the details of the carbon footprint for the campus food system by looking at the carbon footprint of specific food items.

- Set targets for increasing the overall percentage of organic and locally-sourced food in the campus food system. UMM should target 50 percent by 2013.

- Review menu planning to establish a more seasonal menu plan based on the seasonal availability of local ingredients.

- Identify a source of local, grass-fed beef as the top priority, followed by organic pork and chicken, as well as vegetables, as an initial step toward more local sourcing of food supplies.

- Conduct a study on the cost-effectiveness of an on-campus greenhouse system.
SUSTAINABILITY RECOMMENDATIONS

- Evaluate a shift to a made-to-order food ordering system.

- **Travel Analysis**
 - Campus vehicle fleet should continue to be gradually converted to alternative fuels and hybrid technologies.
 - Purchase a “green” bus which uses hybrid technology, alternative fuels or both for campus purposes and look at ways to reduce private vehicle miles by using the bus for coordinated trips and links to regional transit systems, such as the North Star Corridor train.
 - Diesel fueled vehicles should be outfitted with diesel particulate filters to reduce emissions.
 - Preferential parking should be provided for hybrid, alternative fuel, or carpool vehicles. The preferential parking areas should be in existing parking areas, but closest to classrooms, dorms and other campus buildings and signed appropriately.
 - Financial incentives for students living on campus for choosing not to bring their car to campus (i.e., reduced residential fees)
 - Implement a shared vehicle system, such as the Hour Car program in the Twin Cities. (www.hourcar.org)
 - Evaluate travel patterns for opportunities to create carpooling opportunities. One option would be to provide “Park and Ride” lots in strategic locations for carpools.
 - Convert excess existing parking to green spaces or other uses over time.
 - Create a hierarchy of roads, bike trails, pedestrian walkways, and campus entrances that enhance the walking / biking experience in order to encourage less intra-campus automobile use. This will clarify that, as a policy matter, the safe movement of pedestrians and bicyclists on campus is the top transportation priority and not the movement of vehicles. This principle should be held in mind for future campus planning that impacts the movement of people and vehicles.

- **Waste Management**
 - Of the aforementioned strategies, UMM should focus initially on the feasibility of an industrial composting system, which should include capital costs, procurement, etc. The major advantage of this system is its ability to accept paper and meat-based waste for its composting process.
 - Complete a thorough waste analysis and composition study for the campus.
 - Conduct a cost benefit analysis of an industrial composting system.
 - Expand educational efforts related to recycling and waste reduction with students and staff.

- **Utility Infrastructure**
 - We concur with the recommendations put forth in the McKinstry study, which are listed in their report.
 - Further evaluate opportunities for solar lighting on campus along pathways and on the exterior of buildings were the costs of connection to the electrical grid system tends to be higher and offsets the costs of the solar lighting application.

- **US Green Building Council LEED® Certification**
 - Designation of a LEED project area that will be the future reference point for density and community connectivity calculations.
 - Designation of preferred parking areas to be located in close proximity to building entrances and other desirable locations for alternative fuel and commuter/car pool vehicles.
 - Integration of a campus wide stormwater management plan using distributed technologies.
 - Exterior lighting plan, which can be included in energy modeling and renewable energy calculations. Note: we did not see any reference to solar exterior lighting in the McKinstry report and recommend that these lighting systems be evaluated for exterior applications.

- **Developing a Carbon Footprint for UM-Morris**
 - Define the methodology. The best tools for methodology are the GHG (Green House Gases) Protocol tool from the World Resources Institute and the World Business Council for Sustainable Development (www.gghgprotocol.org). There is another format that has been developed as an ISO standard, ISO 14064 and available at www.iso.org.
 - Specify the boundary and scope. In instances where a large institution such as UM-Morris wishes to understand its carbon footprint, we believe it is essential to include in the analysis indirect sources that contribute significantly to an overall carbon footprint, including the campus food service, transportation to and from campus by students and staff, material procurement, and events sponsored by the campus. Campus stakeholders should have a discussion of what might be the appropriate boundary for future LEED purposes. This will be a useful segue into the broader discussion of LEED issues.
 - Collect data and calculate the footprint. The primary data sources are onsite fuel consumption, campus transportation use, any on-campus processes that generate emissions, electrical consumption, student and staff travel in vehicles not owned by the University. A secondary set of data and calculations need to be done for supply chain emissions, including primarily the campus food system and more general materials procurement on campus.
 - Independent Review. It is often recommended that the campus footprint analysis be verified or reviewed by an outside entity, although this is not generally necessary if the program is to be used primarily as an internal management tool. This capacity is best developed as an internal function, although it may be desirable to have an outside entity assist the campus with establishing its structure and operating procedures.

New Sustainability Strategies will affect the Campus Plan, as green infrastructure is proposed for the future. These initiatives will also drive the advancements of campus technology resources.
Technology Assessment Recommendations

Elert & Associates were retained to assess the status of the University of Minnesota Morris (UMM) technology systems and compare their status with other Elert & Associates higher ed clients. Elert & Associates reviewed UMM’s data network, wireless data network, phone system, cabling infrastructure, and AV-multimedia systems. The following sections provide recommendations to close the technological gap with other colleges and universities.

Technology Cabling Infrastructure

Elert & Associates recommends that UMM replace the cabling in the wiring closets where Category 5 cabling is installed and terminated on 110 blocks. Category 5 cabling is unacceptable for housing cabling and data electronics. Elert & Associates recommends that these spaces be modified to allow for better ventilation, cooling, and dedicated power. In spaces where the wiring closet is purposed for another function (janitor’s closet, etc.), a new space near the existing space should be created. Some of these situations could be solved by installing either a floor-standing cabinet or wall-mount cabinet in a space that has better environmental conditions.

Wide Area Network

Since every college and university connects to their own WAN in their own way, it is hard to reach a consensus on which is the correct way of connecting to a WAN. Elert & Associates feels that UMM has an adequate amount of bandwidth in connecting to the MNET. However, since most of UMM’s services are now accessed via the WAN they should look to making this connection redundant in the case of outages due to cut links or periodic maintenance. The connection coming into the City of Morris is redundant to the State but the connection between campus and the POP in Morris is not redundant. Another connection between the campus and the POP should be installed to provide redundancy. This link should enter the campus on a different path than the current link possibly connecting to a second core site on campus for even more redundancy.

Data Center/Servers

Elert & Associates recommends the following recommendations:

Phase I
- Move the existing Cisco chassis into the data center and out of the switch room.
- Make the existing data center the primary data center on campus and re-route fiber currently in the switch room to the data center.
- Remove the shelves in the data center and move to server cabinets with rack-mounted servers. This will create more space in the data center and will also improve security and air handling within the room.
- Install an IP KVM to access individual servers. This will eliminate the abundance of keyboards, mice, and monitors from the data center allowing authorized IT personnel to access servers across the network.
- Remove any unnecessary storage in the data center (ex: old HP switches, etc.)

Phase II
- Establish a second data center on campus with another Cisco chassis that has an identical configuration (Gigabit ports may vary).
- The second data center should have a UPS system, backup power, and its own air conditioning system.
- Install a card access system for each data center. This allows for better security allowing UMM to keep better control of access to the data centers and also to track entry into the data centers.
- Move a portion of the buildings on campus onto the second data core. It is common to divide the buildings up geographically on campus with half on one core and the other half on the other core.

Phase III
- Create dual fiber connections from each building to the data cores. Ideally having separate fiber paths to each core would offer the most redundancy. However, if funding is limited, fiber can be routed between the two cores so that each building will connect to each core but not be on redundant fiber paths. This would provide redundancy in case one of the two chassis was to fail. This also allows UMM to more easily perform periodic maintenance on each chassis without having to bring the campus network down.

More information is needed to provide estimates for the technology aspects of these recommendations. Elert & Associates cannot provide architectural, mechanical, or electrical cost estimates for any new spaces.

Wireless Data Network

Elert & Associates recommends that UMM develop a campus-wide deployment plan for wireless networking. Currently they have access points deployed throughout campus but no overall vision as far as a campus-wide system. At the time of deployment of a campus-wide system, UMM should strongly consider 802.11n as most manufacturers offer pre-draft equipment both on the network and end user sides. The following are estimates for a campus-wide wireless network for UMM:

- 802.11a/g system: $280,000
- 802.11a/n system: $350,000

Phone System

Based on the current evaluation of the phone system at UMM, the campus is in fairly good shape. Their existing phone system has been updated to the latest version of software while their voice mail (NuPoint) needs to be upgraded.

AV-Multimedia Systems

Elert & Associates recommends that UMM budget for placing projectors in all of their classrooms. Typically the cost of a dedicated AV system for a classroom is $12,000 - $15,000 for a projector, mechanical, wall-mount screen, network AV control system, DVD/VCR player, sound system, and a document camera. The instructor work area which houses the equipment is not included in the total because the work area can vary greatly in cost based on matching the aesthetics of the room, size, mobility, etc. A room response (“clicker”) system can range from $5,000 - $20,000 for a 100-student room. The cost for these systems can vary based on whether the system is portable or fixed and how many features the university would like implemented.

Information technology advancement is critical to the future environmental and economic sustainability of the University of Minnesota Morris campus.
Facilities Committee

December 10, 2009

Agenda Item: Consent Report

☐ review ☒ review/action ☐ action ☐ discussion

Presenters: Vice President Kathleen O’Brien

Purpose:

☐ policy ☐ background/context ☒ oversight ☐ strategic positioning

In accordance with Board of Regents Policy: Reservation and Delegation of Authority, review and recommend approval of the Consent Report, which includes the following real estate transactions:

A. Sale of 3,300 Square Feet of Land at 1510-4th Street SE, Minneapolis (Twin Cites Campus)

B. Agreements for the Use of University Facilities and Services for Walden Summer Session Residency Program, July 10-24, 2010 (Twin Cities Campus)

Outline of Key Points/Policy Issues:

The details of these transactions and their financial impact are described in the transaction information pages immediately following this page.

Background Information:

Board of Regents Policy: Reservation and Delegation of Authority states that “The Board of Regents reserves to itself authority to approve the purchase or sale of real property having a value greater than $250,000 or larger than ten (10) acres, and all leases, easements, and other interests in real property with a present value of the gross rent to be paid by or to the University during the initial term in excess of $250,000, consistent with Board policies.”

In accordance with the Board of Regents Calendar, which is included in Board of Regents Policy: Board Operations and Agenda Guidelines, the “sale or purchase of real property between 10 and 40 acres, or with a value between $250,000 and $500,000” and “leases with a present value between $250,000 and $500,000” are presented for review/action as part of the Facilities Committee Consent Report.

President’s Recommendation for Action:

The President recommends approval of the Consent Report.
SALE OF 3,300 SQUARE FEET OF LAND
AT 1510 -4TH STEET SE, MINNEAPOLIS
(TWIN CITIES CAMPUS)

1. Recommended Action

The President recommends that the appropriate administrative officers receive authorization to execute the appropriate documents providing for the sale of 3,300 square feet of land at 1510-4th Street SE, Minneapolis.

2. Location and Description of the Property

The subject property is part of the University Contract Parking Lot C-55 located at 1506-4th Street SE, Minneapolis, immediately adjacent to the 10,890 square feet (Lot 4) the University sold to Doran University LLC on September 2, 2008.

The legal description of the property:

The Northwesterly 20 feet of Lot 3, Block E, Tuttle’s Addition to Saint Anthony, Hennepin County, Minnesota, excluding minerals and mineral rights, if any.

3. Basis for Request

Doran University LLC has requested the purchase of 3,300 square feet of University land at 1510-4th Street SE, Minneapolis for surface parking required for a lease of grade/street level retail space in Sydney Hall, now under construction, to an anchor tenant. Doran University LLC is in the process of completing a long term lease agreement with that anchor tenant.

4. Details of Transaction

The buyer of the subject land will be Doran University LLC, which purchased the adjacent 10,890 square feet of land from the University as part of its assemblage for the Sydney Hall development and Dinky Dome renovation project. The purchase price for the subject land will be the same $100 per square foot price paid by Doran University LLC on the previous purchase, resulting in a total purchase price of $330,760 (reflecting parcel size of 3,307.6 square feet determined by survey). The University’s sale of the subject land is contingent on Doran University LLC executing a lease agreement with the anchor retail tenant. Closing is expected on or before April 1, 2010.
The University will be reserving ingress and egress rights through the subject property for access to a building or parking facility the University might construct on its remaining land in the block in the future.

5. Use of the Property

Doran University LLC would use the subject property for surface parking for its anchor retail tenant.

6. Use of Sale Proceeds

The net proceeds from the sale of the subject land will be used for future Twin Cities Campus real estate purchases.

7. Recommendations

The above-described real estate transaction is appropriate:

Richard H. Pfunzreiter III, Vice President for Finance and CFO

E. Thomas Sullivan, Senior Vice President for Academic Affairs and Provost

Kathleen O'Brien, Vice President for University Services
Sale of 3,300 Square Feet to Doran University, LLC
Minneapolis

This map is intended to be used for planning purposes only and should not be relied upon where a survey is required.

Base Data: Real Estate Office
U of M Facilities Management
AGREEMENTS FOR USE OF UNIVERSITY FACILITIES AND SERVICES
FOR WALDEN SUMMER SESSION RESIDENCY PROGRAM
JULY 10-24, 2010
(TWIN CITIES CAMPUS)

1. Recommended Action

The President recommends that the appropriate administrative officers receive authorization to execute the agreements for the use of University facilities and services by Walden University, Inc. for its 2010 Summer Session Residency Program during the period of July 10 through 24, 2010.

2. Description of Facilities and Services

Lodging: Suite and single bed space for approximately 50 adults in Bailey Hall, 1458 N. Cleveland Avenue, St. Paul; 245 adults in Middlebrook Hall, 412-22nd Avenue South; and 100 adults in Yudof Hall, 220 Delaware Street, SE, Minneapolis.

Group Registration Facilities: Hubert H. Humphrey Center on July 11 and 18, 2010; Continuing Education Conference Center on July 21, 2010.

Food Services (Residential Dining): Comstock Hall (breakfast, July 10 through 24, 2010) and Middlebrook Hall (breakfast and lunch, July 10 through 25, 2010).

Seminar, Workshop and Event Facilities: St. Paul Student Center, Continuing Education and Conference Center, Ferguson Hall, Ted Mann Concert Hall, Hubert H. Humphrey Center, Mondale Hall, and numerous classrooms,

3. Basis for Request

Since the summer of 2007, Walden University has held its Summer Session Residency Programs at the Twin Cities Campus. Prior to 2007, Walden University had held its summer seminars and workshops at Indiana University for 16 years, but outgrew the facilities.

Walden University has requested the use of Twin Cities Campus facilities and services for a fourth summer for its Summer Residency Program, scheduled during the period of July 10 through 24, 2010, which will require University lodging and services for approximately 1,500 adults from all over the world attending courses over the fifteen days of its 2010 summer programming.
4. **Fees**

Walden University, Inc. will pay an estimated $148,048 for lodging and registration facilities, $57,995 (which includes taxes) for food service; and $117,043 for use of St. Paul Student Center, Continuing Education and Conference Center, Ferguson Hall and Ted Mann Concert Hall, Hubert H. Humphrey Center, Mondale Hall, and numerous classrooms. In addition, Walden University is expected to pay $115,343 for the costs of services provided to Walden University for its 2010 summer session by other University units, such as University Libraries, Office of Information Technology, Parking and Transportation Services, UDS Catering, Facilities Management, AV Technician, etc., resulting in a total to the University related to this event of $438,429.

5. **Use of Funds Received by the University**

Housing and Residential Life will receive the payment for the lodging and registration facilities, estimated at $148,048. University Dining Services will receive the payment for the food services, estimated at $57,995. The University facilities at which workshops and seminars will occur will receive those use payments estimated to total $117,043. The other University units which provide services to Walden University for its 2010 Summer Session Residency Program will receive the payments attributable to those services.

6. **Recommendations:**

The above-described real estate transaction is appropriate:

\[\text{Signature}\]

Richard H. Pfutzenreuter, III, Vice President for Finance and CFO

\[\text{Signature}\]

E. Thomas Sullivan, Senior Vice President for Academic Affairs and Provost

\[\text{Signature}\]

Kathleen O’Brien, Vice President for University Services

55
This map is intended to be used for planning purposes only and should not be relied upon where a survey is required.

Base Data: Real Estate Office
U of M Facilities Management
This map is intended to be used for planning purposes only and should not be relied upon where a survey is required.

Base Data: Real Estate Office
U of M Facilities Management

Real Estate Office
University of Minnesota

Agreements for University Facilities and Services for Walden Residency Summer Program 2010

Facilities to be used by Walden St. Paul Campus
Agenda Item: Information Items

☑ review/action ☑ action ☒ discussion

Presenters: Vice President Kathleen O'Brien

Purpose:

☑ background/context ☐ oversight ☐ strategic positioning

Provide the Board of Regents with information regarding the extension of the lease for DECC Arena, 350 Harbor Drive, Duluth.

Outline of Key Points/Policy Issues:

On October 3, 2009, the Duluth Entertainment and Convention Center (DECC) and the University executed an amendment to the lease for the DECC Arena at 350 Harbor Drive, Duluth, for UMD Bulldog Men’s and Women’s Hockey. The amendment provided for the continued use of the DECC Arena through December 29, 2010 at a rental of $299,576.

In July, 2008, the Board of Regents approved a 25-year agreement for the use of the New DECC Arena (now under construction) for UMD Bulldog Men’s and Women’s Hockey and Graduations. The construction schedule for the New DECC Arena provides for completion on December 31, 2010, which would allow the 25-year agreement for the University’s use of the New DECC Arena to begin on January 1, 2011, as contemplated in July, 2008 when the 25-year agreement for the New DECC Arena was approved.

Background Information:

Information items are intended to provide the Board of Regents with information needed for them to provide their oversight responsibilities.